Obesity: The Intersection of Biology, Behavior, and Public Health

Abdul Badi Abou-Samra Director, Qatar Metabolic Institute Co-Chair, National Diabetes Committee Chair, National Obesity Taskforce Jan 25, 2025

Disclosure Statement

Speaker:

Dr. Abdul Badi Abou Samra

- Has no relevant financial/non-financial relationships to disclose.
- Will not be discussing unlabeled/unapproved use of drugs or products.

Obesity: The Intersection of Biology, Behavior, and Public Health

- Objectives:
- To understand the interaction of
- **1. Biology of weight maintenance**
- 2. Behavior & body weight
- 3. Public Health & obesity

1. Biology of weight maintenance - LEPTIN Qatar Metabolic Inst Qatar Metabolic Inst The ob/ob mouse and db/db mouse are obese and diabetic:

- Parabiosis of db/db & WT mice → the WT mouse stops eating and dies from cachexia (*Coleman DL and Hummel KP, AJP 1969*)
 "Supra-physiologic levels of a soluble factor in the db/db causes cachexia of WT, the db/db mouse is resistant to it (LepR mutation)"
- Parabiosis of ob/ob & WT mice cures obesity of the ob/ob mouse (*Coleman DL, Acta Endocr. 1973*)
 "a soluble factor from the WT mouse cures obesity of the ob/ob mouse; ob/ob mouse is deficient in this factor (Leptin mutation)!".

المعهد الوطنى للسكرى والسمنة وأمراض الأبض Qatar Metabolic Institute

1. Biology of weight maintenance - LEPTIN

Leptin Deficiency Syndrome Farooqi et al. NEJM 1999

- Leptin mutation discovered in a family with severe obesity and diabetes - similar features to ob/ob mouse!
- Leptin deficiency can be treated by leptin
- Patients with obesity have resistance to leptin. Their leptin levels are high. Leptin is not useful to treat common obesity.

1. Biology of weight maintenance - α MSH

- Agouti mouse is obese and golden color
 - Ectopic expression of "Agouti Signaling Protein" (ASIP/AgRP) (α MSH antagonist).
 - \circ ASIP/AgRP antagonizes α MSH at MC4 receptor in the hypothalamus \Rightarrow Obesity.
 - \circ ASIP/AgRP antagonizes α MSH at MC1 receptor in melanocytes \Rightarrow yellow color.
- POMC Deficiency in human: hyperphagia and obesity (deficiency of MSH MC4), red hair (deficiency of MSH, MC1) and Neonatal adrenal insufficiency (deficiency of ACTH).
- MCR4 mutation in human \rightarrow obesity only
- AgRP mutation (A67T) in human \rightarrow resistant to obesity (high BMR)

المعهد الوطنى للسكرى والسمنة وأمراض الأبض

Response to Starvation and Forced Feeding

Hypothetical Hunger and Satiety Centers in Rodents Are Experimentally Defined

Neuro-circuits within the Arcuate Nucleus and nearby nuclei regulate food intake!!!!!!!

ARCUATE NUCLEUS

- Neurons co-express NPY/AgRP: increase feeding
- Neurons co-express αMSH/CART*: suppress feeding

*CART: cocaine- and amphetamine-regulated transcript

المعهد الوطني للسكري والسمنة وأمراض الأيض Qatar Metabolic Institute

- "Is it true that obesity is 40% to 70% genetic or inherited from parents?". Does this mean that 40-70% of people with obesity inherit obesity from their parents?
- The statement derives from Twin and Adoption studies which estimate 40% to 70% of BMI variations are due to genetics

1- Twin Study: The Aetiology of Obesity in Children: A study of 101 Twin Pairs (**1976**). Borjeson, Acta Paediatr Scand 65:279

Monozygotic Twins

المعهد الوطني للسكري والسمنة وأمراض الأيض

Qatar Metabolic Institute Hamad

Dizygotic Twins

1- Twin Study: The Aetiology of Obesity in Children: A study of 101 Twin Pairs (1976). Borjeson, Acta Paediatr Scand 65:279

Table 1 Number	Number of Pairs		Table 5. Comparison between MZ		
Reported twins	5,008	and DZ in weight differences			
One or both twins overweight 59	<mark>%</mark> 250	expressed in S.D. (M)			
One or both twins overweight and of same sex Not possible to examine	1 160 18	Twin Type	Intra-Pair Difference S.D. (M)	Twin Fathers S.D. (M)	
Examined (primary material) Excluded because of disease	4 138 11	Monozygotic (39 Twins)	0.75	2.64	
Excluded because not fat enough Investigation material	26 101	Dizygotic (61 Twins)	2.36	2.86	

Conclusion:

- Much less variations in-between monozygotic twins that dizygotic twins
- A major effects of genetics on BMI of twins

2- Adoption Study: An Adoption Study of Human Obesity (**1986**). Stunkard et, NEJM 314:193

المعهد الوطني للسكري والسمنة وأمراض الأبض

Qatar Metabolic Institute Hamad

- "Is it true that obesity is 40% to 70% genetic or inherited from parents?". Does this mean that 40-70% of people with obesity inherit obesity from their parents?
- The statement derives from Twin and Adoption studies which estimate BMI variations to be 40% to 70% among twins
- Twin studies show that: "if a twin develops obesity, the likelihood for the other twin to develop obesity is 40-70%. If a twin remains lean, the likelihood of the other twin to remain lean is 40-70%" (AJCN 2016,104:371).
- Adoption studies show that "BMI of adopted children correlates with that of biological parents not adopted parents".
- Twin and Adoption studies do not imply that 40-70% of people with obesity inherited obesity from parents.

) المعهد الوطني للسكري والسمنة وأمراض الأيض Qatar Metabolic Institute Hamad

1. Biology of weight maintenance – our genes?

Genetics of common obesity:
GWAS of ~800,000 individuals, identified >750 loci, with MAFs as small as 1.6% and per-allele effects as low as 0.04 kg/m2 per allele (~120 g / 1.7 m person).

• Combined, these loci explain 6% of BMI variations.

 MC4R variations has a prevalence of 7.3% in general population (Namou et al. IJO 2021) – not all are pathologic.

Nat Rev Genetics 2022, 23:120

Does polygenic score predict obesity?

Nat Rev Genetics 2022, 23:120

Does polygenic score predict obesity?

	PGS <u>></u> 90 th percentile
_	at at at at at at at at at
	nder all all all all all all all all all
	nder vale vale vale vale vale vale vale vale
	all
er er	al al al al al al al al al
-	al al al al al al al al
	al al al al al al al al
0	at at at at at at at at at
2	at at at at at at at at at
	at at at at at at at at at

-) المعهد الوطني للسكري والسمنة وأمراض الأيض Qatar Metabolic Institute
- Only 40% of people with high polygenic obesity risk score (defined as >90th percentile) develop BMI≥30. They represent about 15-20% of people with obesity.
- Most people with obesity (80-85%) do not have a high polygenic obesity risk score
- The main cause of the obesity epidemic is not the emergence of new genetic mutations. Modern life with food abundance & reduced physical activity are to blame.
- Obesity genes are potential therapeutic target(s).

المعهد الوطني للسكري والسمنة وأمراض الأيض

Adipose tissue retains epigenetic memory of obesity after weight loss *Hinte et al. Nature 2024*

- "Genetics predisposes to obesity, unhealthy lifestyle triggers obesity, epigenetics maintains obesity".
- Unhealthy lifestyle causes obesity in people regardless of obesity genetic risk score
- Healthy lifestyle prevents obesity in people with high genetic risk
- Epigenetic modifications → persistence of obesity and resistance to treatment

المعهد الوطني للسكري والسمنة وأمراض الأيض Qatar Metabolic Institute

2. Behavior & body weight – social influences

المعهد الوطني للسكري والسمنة وأمراض الأيض Qatar Metabolic Institute

2. Behavior & body weight – social influences

The Spread of Obesity in a Large Social Network Over 32 Years. *NEJM 2007*

- 12067 people from the Framingham cohort followed over 32 years
- BMI every 5 years and social connections were determined
- Overtime, most people develop obesity.
- Obesity clusters followed the strength of social connections.
- Few clusters of people without obesity
- BMI of people is influenced by their social connections !!

2. Behavior & body weight – social influences

المعهد الوطنى للسكرى والسمنة وأمراض الأبض Qatar Metabolic Institute Hamad

Probability of obesity in a person (ego) if his/her social connections (alter) become obese.

Degree of separation = 1 if direct connection, **2 to 6** if through others.

2. Behavior & body weight – social influences

) المعهد الوطني للسكري والسمنة وأمراض الأيض Qatar Metabolic Institute

Probability of obesity in a person (ego) if his/her social connections (alter) become obese.

2. Behavior & body weight – Hedonic Eating

Cafeteria Diet: a Robust Model of Met Sd: Sampey et al, Obesity 2011, 9:1109

Even rats have a sweet tooth !!!!!!

2. Behavior & body weight – Hedonic Eating

Cafeteria Diet for Rats? "cookies, cereals, cheese, processed meats, crackers"

- CAFD, HFD and LFD \rightarrow more calories consumed \rightarrow increased weight
- Glucose intolerance is associated with all 3 diets, worse in the CAF diet
- Insulin secretion is higher and response to insulin is lower
- Taste of food disturbs energy balance!

Obesity (2011) 19, 1109–1117

المعهد الوطني للسكري والسمنة وأمراض الأبض

Oatar Metabolic Institute

2. Behavior & body weight – Sedentary Life

None Exercise Ambulatory Thermogenesis (NEAT) Levine et al. Science 2005

Body movements measured every ½ second in 20 individuals (10 lean and 10 with obesity):

- Individuals with obesity sit ~160 min a day more than leans
- Individuals with obesity expend ~350 less calories per day in NEAT

If subjects with obesity adopt the NEAT-behavior of lean individuals, they may expend an extra 350 kcal per day!!!

المعهد الوطني للسكري والسمنة وأمراض الأيض Qatar Metabolic Institute

3. Public Health and Obesity

3. Public Health and Obesity

103 processes energy balance

المعهد الوطني للسكري والسمنة وأمراض الأيض Qatar Metabolic Institute

ے Har	0- na	۵ h

					-
Variable		Variable		Variable	
Alcohol consumption—		Degree of innate activity in childhood		Appropriateness of child growth	
Convenience of food offerings		Degree of physical education	11	Appropriateness of embryonic & fetal growth	
De-skilling		Functional fitness	nrocassas	Appropriateness of maternal body composition	
Demand for convenience	15	Learned activity patterns in early childhood	processes	Appropriateness of nutrient partitioning	10
Energy-density of food offerings	nrocassas	Level of domestic activity	Individual	Degree of optimal GI signalling	19
Fibre content of Food & Drink-	processes	Level of occupational activity	physical	Degree of primary appetite control by brain	processes
Food abundance	Food	Level of recreational activity	activity	Extent of digestion and absorption	
Food exposure	consump-	Level of transport activity		Genetic and/or epigenetic predisposition to obesity	
Food variety	tion	Non-volitional activity (NEAT)		Level of adipocyte metabolism	Physic
Force of dietary habits		Parental modelling of activity		Level of fat-free mass	Pilysio-
Nutritional quality of Food & Drink—		Physical activity		Level of infections	logy
Palatability of food offerings-		Demand for indulgence/compensation	10	Level of satiety	
Portion size—	1 1	Desire to resolve tension	10	Level of thermogenesis	
Rate of eating	1 1	F2F social interaction	processes	Predisposition to activity—	
Tendency to graze		Food literacy	Individual	Quality & Quantity of breast feeding-	
Cost of ingredients		Individualism	mayaka	Reliance on pharma remedies—	
Demand for health-		Perceived inconsistency of science-based messages	psycno-	Reliance on surgical interventions	
Desire to differentiate food offerings	1 1	Psychological ambivalence	logy	Resting metabolic rate	
Desire to maximise volume		Self esteem		Side-effects of drug use-	
Desire to minimise cost	18	Stress		Acculturation	
Effort to increase efficiency of consumption	nrocossos	Use of medicines—		Availability of passive entertainment options	
Effort to increase efficiency of production	piocesses	Accessibility to opportunities for physical exercise	40	Children's control of diet	
Female employment—	Food	Ambient temperature	12	Conceptualisation of obesity as a disease	4.0
Level of employment—	nroduo	Cost of physical exercise	processes	Education-	18
Level of female employment—		Dominance of motorised transport		Exposure to food advertising-	processes
Market price of food offerings-	tion	Dominance of sedentary employment	Physical	Importance of ideal body-size image	
Pressure for growth and profitability		Opportunity for team-based activity—	activity	Media availability	Social
Pressure on job performance		Opportunity for unmotorised transport	environ-	Media consumption	boolar
Pressure to cater for acquired taste		Perceived danger in environment-	ment	Parental control	psycno-
Pressure to improve access to food offerings		Reliance of labour-saving devices		Peer pressure	logy
Purchasing power—		Safety of unmotorised transport	7	Perceived lack of time	
Societal pressure to consume		Social depreciation of labour		Smoking cessation	
Standardisation of food offerings		Walkability of living environment—		Social acceptability of fatness—	
				Social rejection of smoking—	
				Sociocultural valuation of food	
				Sociocultural valuation of physical activity	
				TV watching Time spent watching TV	

) المعهد الوطني للسكري والسمنة وأمراض الأيض Catar Metabolic Institute _{Hamad}

3. Public Health and Obesity

) المعهد الوطني للسكري والسمنة وأمراض الأيض Qatar Metabolic Institute

3. Public Health and Obesity

Obesity System Map (UK Foresight Program): 103

processes influence energy balance

mapped to 7 domains

Foresight Obesity System Map

- Lifestyle modification influences at maximum 21 out of 103 contributors to obesity "individual psychology and individual physica activity"
- Adding medications to lifestyle influences 40/103 contributors
- If no action is taken at a society level, the external contributors continuously exert pressure to "regain" weight
- To reduce obesity at a community level the remaining 63 contributors should be addressed within the Food Production and Consumption, the Social Psychology and the Physical Activity Environment

3. Public Health and Obesity

Comprehensive Approach to the Prevention of Obesity

3. Public Health and Obesity

Comprehensive Approach to the Management of Obesity

Regulation of Appetite & BMR

) المعهد الوطني للسكري والسمنة وأمراض الأيض Qatar Metabolic Institute

"Neuro-Endocrine-Gut" Circuits → Auto-Regulation of Apatite & BMR Based on Physiological Needs (Genetically-Determined) with individual variations

Regulation of Appetite & BMR

) المعهد الوطني للسكري والسمنة وأمراض الأيض Qatar Metabolic Institute

Regulation of Appetite & BMR

) المعهد الوطني للسكري والسمنة وأمراض الأيض Qatar Metabolic Institute

We often eat not because of physiological needs:

- We eat with friends and family to entertain social interactions
- We eat because foods look, taste and/or smell nice and different
- We eat because we are depressed (or excited!).
- We often eat "out" or buy "ready to eat" food
- Our genes became "imprinted" with obesogenic environment and "locked" in the "chronic obesity syndrome" (epigenetics)

