Exercise in the heat: what factors influence performance and health?

Dr Julien Périard, PhD Research Scientist Aspetar Orthopaedic and Sports Medicine Hospital

DISCLOSURE STATEMENT

Speaker: Julien Périard

- Has no relevant financial relationships to disclose
- Will not be discussing the off-label or investigational use of products

PRESENTATION OUTLINE

- Basics of thermoregulation
 - Heat production/dissipation
 - Heat illness

- Endurance and team/individual sports
- Exercising in Doha
- Pathways of fatigue in the heat
 - Mechanisms of fatigue (how and why)
 - Thermal and cardiovascular strain
 - Countermeasures

THERMOREGULATION

- Human body temperature ~37.0°C
- Hypothalamus integrates signals from skin and deep core thermosensors

Exercise, fever, ambient conditions, medication

THERMOREGULATION – SET POINT

EXERTIONAL HEAT ILLNESS

Condition	Symptoms	Management
Heat cramps Heat exhaustion Heatstroke	Brief, painful skeletal muscle spasms Mild to moderate illness with inability to sustain cardiac output; moderate (>38.5° C [101.3° F]) to high (>40° C [104° F]) body temperature; often accompanied by dehydration Profound CNS abnormalities (agitation, delirium, stupor, coma) with severe hyperthermia (>40° C [104° F])	Rest; replacement of electrolytes; avoid salt tablets Move supine individual to cool, shaded environment, and elevate legs; loosen or remove clothing, and actively cool skin; administer oral fluids Ensure an open airway, and move to a cool environment. Immediately cool to <39° C (102.2° F) using ice packs, water bath, wetting with water and continuous fanning; IV fluid administration; reestablish normal CNS function; avoid antipyretics or drugs with liver toxicity

Radiation

Convection

Conduction

Evaporation

BEHAVIOURAL THERMOREGULATION

Responses: posture, clothing, seek shade, voluntary movement

PRESENTATION OUTLINE

- Basics of thermoregulation
 - Heat production/dissipation
 - Heat illness

- Influence of heat stress on exercise performance
 - Endurance and team/individual sports
 - Exercising in Doha
- Pathways of fatigue in the heat
 - Mechanisms of fatigue (how and why)
 - Thermal and cardiovascular strain

Marathons Various WBGTs

Impact of weather on marathon performance

*WBGT: wet-bulb-globe temperature index (temperature, humidity, solar radiation and wind)

Impact of heat on cycling performance

750 kJ cycling time trial COOL: 18°C - 40% RH HOT: 35°C - 60% RH

Impact of heat on cycling performance

43.4 km cycling time trial COOL: 8°C - 30% RH HOT: 36°C - 15% RH

2 x 10 min Effective play COOL: 22°C - 70% RH

HOT: 37°C - 35% RH

Match-play tennis in the heat

Effective playing time (min)

Match characteristics

- Aces & double faults (%)
- **Point duration**
- **Number of points**
- **Number of games**
- Between point duration (~10 s)
- Effective playing (~3.5%)

Football match in in the heat (Doha)

33.3 km.h⁻¹

32.1 km.h⁻¹

Sprint speed

~ 12 sprints

~ 20 m

Number / Distance sprints

10.3 km / 2.2 km

9.6 km / 1.7 km

Total / High intensity running distance

74%

Hot: 43°C

Successful crosses & passes

DOHA YEARLY TEMPERATURE

PRESENTATION OUTLINE

- Basics of thermoregulation
 - Heat production/dissipation
 - Heat illness

- Influence of heat stress on exercise performance
 - Endurance and team/individual sports
 - Exercising in Doha
- Pathways of fatigue in the heat
 - Mechanisms of fatigue (how and why)
 - Thermal and cardiovascular strain

TEMPERATURE REGULATION AND PERFORMANCE

CARDIOVASCULAR STRAIN IN THE HEAT

Fick Equation: $VO_{2max} = Q \times a - vO_{2diff}$

Q = cardiac output a-vO_{2diff} = arteriovenous oxygen difference

Exercising at the same absolute work load is relatively harder

- Thermoregulatory-mediated rise in cardiovascular strain:
 - ↓ sustainable and maximal VO₂
 - ↓ sustainable and maximal power output
 - ↑ relative exercise intensity

4 x 15 min Time Trials COOL: 18°C - 40% RH HOT: 35°C - 60% RH

4 x 15 min Time Trials COOL: 18°C - 40% RH HOT: 35°C - 60% RH

- Exercise is regulated by maintenance of relative intensity within narrow range
- In response to sensory information stemming from a thermal strain-mediated increase in cardiovascular strain

COUNTERMEASURES – HEAT ACCLIMATION

COUNTERMEASURES – HYDRATION

- Hydrate before, during and after exercise
- Consume 6 ml per kg of body mass every 2-3 h to start exercise euhydrated
 - 6 x 70 = 420 ml
- Drink 150-200 ml every 15-20 min during exercise
 - Cold, low sugar drink with sodium (salty sweaters)
- Recovery hydration regimens should include sodium, carbohydrates and protein

COUNTERMEASURES – PREVENTING HEAT ILLNESS

- Optimise physical fitness before exercise in the heat
- Awareness of early symptoms of heat illness
- Avoid heavy exercise in the heat during:
 - Infection (fever)
 - Insufficient sleep
 - Glycogen depletion or hypoglycaemia
- Schedule sessions in cooler parts of day
 - Cancel or postpone exercising in extreme heat (>36°C)

SUMMARY

- Basics of thermoregulation
 - Autonomic and behavioural thermoregulation
 - Understand and recognize heat illness

- Influence of heat stress on exercise performance
 - Decrease in endurance performance
 - Increase in brief/explosive tasks
 - Heat stress influences perception
- Pathways of fatigue in the heat
 - Thermal and cardiovascular strain interact
 - Increase in relative exercise intensity
 - Countermeasures

THANK YOU

- Aspire Zone Foundation
- QNRF Junior Scientists Research Experience Program