

Diabetic Foot Challenge

R A Malik

Professor of Medicine, Weill Cornell Medicine-Qatar & Weill Cornell Medicine in NY

Speaker:

Rayaz A. Malik, MD

- Has disclosed that he serves on the Speaker's Bureau for Pfizer and Lilly
- Will not be discussing the off-label or investigational use of products

Referral

- 50 year old Qatari male with Type 1 DM 32 years.
- HbA1c 6.8%
- BP: 118/64
- ACR: 1.2, eGFR-86
- Lipids normal (Statin)

What Next?

OCT

Diagnosis:		Comment:		
	V/L	Asymmetry OD - OS	IR 30° [HS]	0
		в -11 N 20 г -6 10		84
_ 200 μm		NS TS -22 -1	L ²⁰⁰ μm	
OCT ART (25) Q: 28 [HS]	ILM	N G T 20 5 -8 NI TI 24 8	OCT ART (17) Q: 29 [HS]	ILM
				RNFL
			SARLAR D. MILLERATE	
200 µm			200 µm	
<u><u></u> <u>300</u> 240</u>		Within Normal Limits (p>0.05)		300
180 120 60	when	Borderline (p<0.05) Outside Normal Limits (p<0.01)	m	180 120 60
0 45 90 135 TMP SUP	180 225 270 315 360 NAS INF TMP Position [°]		0 45 90 135 180 TMP SUP NAS Position [°]	225 270 315 360 INF TMP
s 104 75 N 154	1200 1200	op Angensk	os	я 116 N ст 65 ст 118
TS NS	0 TMP	45 90 135 180 225 SUP NAS Position [*]	270 315 360 INF TMP	NS TS
(133) (102) T G N 55 94 83				(102) (133) N G T 63 89 61
(73) (96) (72) TI NI 131 136	Classification OD		Classification OS	(72) (96) (73) NI TI 112 124
(141) (105)	Within Normal Limi	ite \	Within Normal Limits	(105) (141)

Notes:

Date: 12/9/2015

Software Version: 6.0.9

Signature:

www.HeidelbergEngineering.com

Corneal Confocal Microscopy

Corneal Confocal Microscopy

Corneal nerve fibre density (CNFD): 26.0 ± 10.0 no./mm² (control: 36.5 /mm²) Corneal nerve branch density (CNBD): 83.3 ± 40.3 no./mm² (control: 76.0 /mm²) Corneal nerve fibre length (CNFL): 21.9 ± 6.6 mm/mm² (control: 25.8 mm/mm²)

Electrophysiology

Nerve	Amplitude (mV)	NCV (m/s)
Median	5.8	20 (45-70)
Ulnar	0.5	19 (48-74)
Radial	0.6	10 (48-70)
Peroneal	1.6	14 (44+)
Sural	2.5	13 (46-64)

Genetics

But

No Family Hx.

Age 50

NORMAL

Genetics

MLPA* (Multiplex Ligation-dependent Probe Amplification) (deletion or duplication) of PMP22 gene

De Novo Mutation 10%

Son 14 Clumsy

Probes for each of the five PMP22 exons are present in this probemix.

CMT: Incidence 1:2500 (AD) (1) PMP22 duplications (CMT1A) (60%) encodes a 22 KD protein in Schwann Cells (2) PMP22 deletions (HNPP) (3) PMP22 point mutations (both phenotypes.)

ADA 2016: Clinical Pearls

- Most common forms of DN are DSPN and AN.
- DSPN is a length-dependent symmetrical disorder and most commonly predominantly sensory.
- Neuropathy may be present in patients with metabolic syndrome, and/or impaired glucose tolerance.
- Non-diabetic neuropathies may occur in diabetes, may be more prevalent than in non- diabetic populations (e.g., higher incidence of B12 deficiency with long-term metformin treatment; CIDP), and should be actively excluded.

Atypical Neuropathy

- Rapid progression Image: Second Second
- Asymmetry 🗵
- Motor > Sensory ☑
- Other Complications 🗵
- Family History ☑
- Drugs 🗵

A swollen foot

- 52 yr old male
- T1D for 25yrs
- Retinopathy: PRP
- HTN 5yrs, eGFR 56
- Long term Urinary Catheter
- Swelling foot 2 months

Presentation

A&E: Diagnosis?

Cellulitis
DVT
Gout
Charcot
Osteomyelitis

Investigations

- ESR 80
- CRP 142
- Pro-calcitonin 4.6 ng/mL

Procalcitonin

 Procalcitonin is a 116 amino-acid peptide precursor of the hormone calcitonin

Procalcitonin in sepsis

- Bacterial toxins (gram+/gram-) and cytokines stimulate production of Procalcitonin in all parenchymal tissues.
- Non endocrine tissues e.g. liver, lung, brain etc. do not have endocrine granules where calcitonin can be stored
- Therefore PCT is immediately released into the bloodstream

PCT: Sepsis diagnosis

- PCT levels accurately differentiate sepsis from noninfectious inflammation*
- PCT has been demonstrated to be the best marker for differentiating patients with sepsis from those with systemic inflammatory reaction not related to infectious cause

Simon L. et al. Clin Infect Dis. 2004; 39:206-17

DFU vs Osteomyelitis

DFU vs osteomyelitis

- ESR >67 mm/hr (sensitivity 84%; specificity 75%)
- CRP >14 mg/L (sensitivity 85%; specificity 83%)
- Pro-calcitonin >0.3 ng/mL (sensitivity 81%; specificity 71%)

The value of inflammatory markers to diagnose and monitor diabetic foot osteomyelitis

- Osteo (n=24) v DFU (n=11).
- ESR, CRP, IL-6, IL-8, TNFα, MCP-1, MIP1α
- Pro-calcitonin (PCT) (P<0.049).

Khodaee *et al. J Fam Pract.* 2015; 64: 309-310 Van Asten *et al. Int Wound J* 2015;

Imaging?

Probe to Bone

CT

Bone Scan

Which test?

Type of evidence	Number of patients	Diagnostic test	Gold standard comparison	Pooled results		
Meta-analysis of 9 cohort trials ³ (8 prospective, 1 retrospective)	Total N=612					
	4 trials; N= 177	Plain film	Histopathology or bone culture	Sensitivity 54% Specificity 68% LR+=1.7 LR==0.68		
	4 trials; N=135	MRI	Histopathology or bone culture	Sensitivity 90% Specificity 79% LR+=4.3 LR-=0.13		
	6 trials; N= 185	Bone scan	Histopathology or bone culture	Sensitivity 81% Specificity 28% LR+=1.1 LR-=0.68		
	2 trials; N=288	PTB	Histopathology or bone culture	Sensitivity 60% Specificity 91% LR+=6.7 LR==0.44		
Meta-analysis ¹ of 21 cohort trials ⁴ (8 prospective, 13 retrospective)	Total N=1027					
	1 trial; N=35	Ulcer >2 cm ²	Bone biopsy	LR+=7.2 LR-=0.48		
	3 trials; N=75	РТВ	Bone biopsy	LR+=6.4 LR-=0.39		
	4 trials; N=108	ESR >70 mm/hr	Bone biopsy	LR+=11		
	16 trials; N= 567 (data pooled for 7 trials; N=217)	Plain film	Bone biopsy	LR+=2.3 LR-=0.63		

Khodaee et al. J Fam Pract. 2015; 64: 309-310

Diagnosis?

Cellulitis
DVT
Gout
Charcot
Osteomyelitis

Case 2

- 45yrs old male.
- Type 1 diabetes 30 yrs.
- eGFR 38.
- Swelling right foot >1 month.
- CRP 2
- ESR 5
- Pro-calcitinon 0.1ng/ml

Is There a Systemic Inflammatory Response in the Acute Charcot Foot?

- 36 consecutive patients who presented to the Diabetic Foot Clinic with a red, hot swollen foot
- Skin foot temperature 3.1°C (2.4 4.2) > in the Charcot compared with the contralateral foot

HOWEVER

- Median CRP: 5.8 mg/l (5–11) and <5 mg/l in 47.2% of patients
- Median ESR: 21 mm/h (13–36)
- WCC: 7.0 (4 –11).

Offloading treatment is linked to activation of proinflammatory cytokines and start of bone repair and remodeling in Charcot arthropathy patients

Folestad et al. Foot & Ankle Research 2015; 8: 72-84

Imaging

Diagnosis

Cellulitis DVT Gout Charcot Osteomyelitis

Charcot: Pathogenesis

Pro-inflammatory cytokines (IL-1β, TNF-α) Activation (RANKL- NFκB) OSTEOCLASTS (CGRP/VIP)

Neurotraumatic

Volkman 1870

Charcot: Imaging

MRI: Sen-76.9%, Spec- 75% T1 increased T2 decreased

F¹⁸ FDG PET: Sen-100%, Spec-93%

Management?

Off-loading

Bisphosphonates

Denosumab

RANK-L inhibitor (Osteoclasts)

Teriparatide

Recombinant PTH (Osteoblasts)

Thank you